首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1785篇
  免费   348篇
  国内免费   135篇
化学   440篇
晶体学   16篇
力学   202篇
综合类   23篇
数学   55篇
物理学   1532篇
  2024年   9篇
  2023年   34篇
  2022年   54篇
  2021年   71篇
  2020年   81篇
  2019年   36篇
  2018年   78篇
  2017年   81篇
  2016年   102篇
  2015年   69篇
  2014年   148篇
  2013年   103篇
  2012年   76篇
  2011年   124篇
  2010年   118篇
  2009年   108篇
  2008年   98篇
  2007年   100篇
  2006年   105篇
  2005年   82篇
  2004年   72篇
  2003年   83篇
  2002年   48篇
  2001年   76篇
  2000年   59篇
  1999年   27篇
  1998年   29篇
  1997年   39篇
  1996年   32篇
  1995年   29篇
  1994年   24篇
  1993年   17篇
  1992年   9篇
  1991年   7篇
  1990年   14篇
  1989年   3篇
  1988年   10篇
  1987年   5篇
  1986年   2篇
  1985年   1篇
  1981年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1957年   1篇
排序方式: 共有2268条查询结果,搜索用时 109 毫秒
101.
Boiling histotripsy is a promising High-Intensity Focused Ultrasound (HIFU) technique that can be used to induce mechanical tissue fractionation at the HIFU focus via cavitation. Two different types of cavitation produced during boiling histotripsy exposure can contribute towards mechanical tissue destruction: (1) a boiling vapour bubble at the HIFU focus and (2) cavitation clouds in between the boiling bubble and the HIFU source. Control of the extent and degree of mechanical damage produced by boiling histotripsy is necessary when treating a solid tumour adjacent to normal tissue or major blood vessels. This is, however, difficult to achieve with boiling histotripsy due to the stochastic formation of the shock scattering-induced inertial cavitation clouds. In the present study, a new histotripsy method termed pressure-modulated shockwave histotripsy is proposed as an alternative to or in addition to boiling histotripsy without inducing the shock scattering effect. The proposed concept is (a) to generate a boiling vapour bubble via localised shockwave heating and (b) subsequently control its extent and lifetime through manipulating peak pressure magnitudes and a HIFU pulse length. To demonstrate the feasibility of the proposed method, bubble dynamics induced at the HIFU focus in an optically transparent liver tissue phantom were investigated using a high speed camera and a passive cavitation detection systems under a single 10, 50 or 100 ms-long 2, 3.5 or 5 MHz pressure-modulated HIFU pulse with varying peak positive and negative pressure amplitudes from 5 to 89 MPa and −3.7 to −14.6 MPa at the focus. Furthermore, a numerical simulation of 2D nonlinear wave propagation with the presence of a boiling bubble at the focus of a HIFU field was conducted by numerically solving the generalised Westervelt equation. The high speed camera experimental results showed that, with the proposed pressure-modulated shockwave histotripsy, boiling bubbles generated by shockwave heating merged together, forming a larger bubble (of the order of a few hundred micron) at the HIFU focus. This coalesced boiling bubble then persisted and maintained within the HIFU focal zone until the end of the exposure (10, 50, or 100 ms). Furthermore, and most importantly, no violent cavitation clouds which typically appear in boiling histotripsy occurred during the proposed histotripsy excitation (i.e. no shock scattering effect). This was likely because that the peak negative pressure magnitude of the backscattered acoustic field by the boiling bubble was below the cavitation cloud intrinsic threshold. The size of the coalesced boiling bubble gradually increased with the peak pressure magnitudes. In addition, with the proposed method, an oval shaped lesion with a length of 0.6 mm and a width of 0.1 mm appeared at the HIFU focus in the tissue phantom, whereas a larger lesion in the form of a tadpole (length: 2.7 mm, width: 0.3 mm) was produced by boiling histotripsy. Taken together, these results suggest that the proposed pressure-modulated shockwave histotripsy could potentially be used to induce a more spatially localised tissue destruction with a desired degree of mechanical damage through controlling the size and lifetime of a boiling bubble without the shock scattering effect.  相似文献   
102.
It is shown that a liquid slug in gas–liquid segmented flow in microchannels can act as an acoustic resonator to disperse large amounts of small liquid droplets, commonly referred to as atomization, into the gas phase. We investigate the principles of acoustic resonance within a liquid slug through experimental analysis and numerical simulation. A mechanism of atomization in the confined channels and a hypothesis based on high-speed image analysis that links acoustic resonance within a liquid slug with the observed atomization is proposed. The observed phenomenon provides a novel source of confined micro sprays and could be an avenue, amongst others, to overcome mass transfer limitations for gas–liquid processes in flow.  相似文献   
103.
Two mesogenic homologous series, 2-[4-(4-n-alkoxybenzoyloxy)-2-methylphenylazo]-naphthalenes (I) and 2-[4-(4-n-alkoxybenzoyloxy)-3-methylphenylazo]naphthalenes (II) with a lateral methyl group have been synthesized. Both series are purely nematogenic. The mesomorphic properties of both series are compared with each other and also with the properties of other structurally related series to evaluate the effect of the lateral methyl group on mesomorphism. The chiral nematic (N*) mesophase was induced in the system by doping with a derivative of naturally occurring chiral menthol.  相似文献   
104.
为提升量子点图像分割精度,降低特征识别误差,提出一种基于改进U-Net的量子点图像分割方法.首先,在预处理阶段,设计了以色彩通道为权值的灰度化算法,以提升后续分割效果.其次,在STM图像分割部分,在原始U-Net结构上引入中间过渡层以均衡网络各层特征.而后,建立数据集,并通过实验对比不同分割算法的精确度、召回率、F-measure.最后,将分割算法应用于量子点的特征识别,并测试了不同分割方式对应用的影响.实验结果显示,改进灰度化方法保留细节信息丰富,明显提升了量子点分割精度;改进U-Net的平均精确率、召回率、F-measure相较原始网络分别提升了13.83%、2.16%、8.13%.同时,实验数据表明由于分割精度的提升,量子点数量、纵横比等特征参数的识别更加精确.  相似文献   
105.
Takahashi S 《Ultrasonics》2012,52(3):422-426
Highly effective piezoelectric polymer transducers operating in air at high frequencies have been successfully made by casting a solution of ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) P(VDF/TrFE) directly on a backing metal plate, and their performance has been evaluated. By utilizing this method, it has been possible to develop the three kinds of transducers that operate respectively at 4, 6 and 10 MHz in air. For precise evaluation of the performance of the P(VDF/TrFE) transducers, the absorption loss in air was measured up to 10 MHz. It was confirmed that the empirical formula obtained from the measured absorption values in air at high frequencies was in alignment with its theoretical value. In addition, a high lateral resolution acoustic image of a ROM-Chip (amplitude-image) at 6 MHz in air was successfully displayed using an air coupled concave type P(VDF/TrFE) transducer by bonding an epoxy adhesive.  相似文献   
106.
Son KT  Lee CC 《Ultrasonics》2012,52(4):555-563
Silver epoxy was selected to bond transducer plates on glass substrates. The properties and thickness of the bonding medium affect the electrical input impedance of the transducer. Thus, the thickness of the silver epoxy bonding layer was used as a design parameter to optimize the structure for the transducer input impedance to match the 50 Ω output impedance of most radio frequency (RF) generators. Simulation and experimental results show that nearly perfect matching is achieved without using any matching circuit. At the matching condition, the transducer operates at a frequency band a little bit below the half-wavelength resonant frequency of the piezoelectric plate. In experiments, lead titanate (PT) piezoelectric plates were employed. Both full-size, 11.5 mm × 2 mm × 0.4 mm, and half-size, 5.75 mm × 2 mm × 0.4 mm, can be well matched using optimal silver epoxy thickness. The transducer assemblies demonstrate high efficiency. The conversion loss from electrical power to acoustic power in soda-lime glass is 4.3 dB. This loss is low considering the fact that the transducers operate at off-resonance by 12%. With proper choice of silver epoxy thickness, the transducer can be matched at the fundamental, the 3rd and 5th harmonic frequencies. This leads to the possible realization of triple-band transducers. Reliability was assessed with thermal cycling test according to Telcordia GR-468-Core recommendation. Of the 30 transducer assemblies tested, none broke until 2900 cycles and 27 have sustained beyond 4050 cycles.  相似文献   
107.
Kawashima K 《Ultrasonics》2012,52(2):287-293
An inverse spectral procedure was applied to reconstruct the acoustic impedance profile along the thickness direction of a plate using its thickness resonance frequencies, density and thickness. For a successful reconstruction, the material-property profile must be symmetric about the mid-plane of the plate. Several cases of numerical simulations, including plates with a few layers and with a high number of layers are described. The calculated resonance frequencies were used to reconstruct the acoustic impedance profile, a process that was successful for all cases. We assume that a plate with a high number of layers, each with a different but constant acoustic impedance, simulates a plate with a smoothly varying acoustic impedance profile. It can be concluded that such a plate, which generates small, virtually undetectable, internally reflected waves, can also be reconstructed. In the special case of a plate of unknown thickness and unknown but constant density, the method is still useful, because a relative variation of the material property can be reconstructed using only the resonance frequencies. An experiment using a resonance-mode electromagnetic acoustic transducer (resonance-mode EMAT) is also described. EMAT is a non-contact ultrasonic method that can measure thickness resonance frequencies, making it appropriate for this method. Some examples of applications are measurement of the temperature profile inside a rolled metal sheet, measurement of a clad metal plate, and monitoring of a metal casting.  相似文献   
108.
Low angle grain boundaries, also referred to as domain walls, is one of the major structural defects in c‐axis physical vapor transport (PVT) grown hexagonal Silicon Carbide. To investigate the nature of the low angle boundaries, polarized optical microscope was used. The low angle boundary gives bright stress birefringence images under polarizing optical microscope. Periodic extinction of the stress birefringence images occurs when the (0001)‐face SiC is rotated under polarizing optical microscope. The micro‐structure of the low angle boundary is proposed. Using dislocation elastic theory, it is theoretically confirmed that the domains consist of uniform pure edge dislocations with Burgers vectors perpendicular to the dislocation arrays. The simulation results coincide with the experimental observations.  相似文献   
109.
光场显微镜实现裸眼三维实时显示   总被引:1,自引:0,他引:1  
戴志华  徐于萍  步敬  杨勇  赵星  袁小聪 《光学学报》2012,32(10):1022005-243
提出了一种将光场显微镜与裸眼三维显示技术相结合的方法,实现了利用光场显微镜对微观样品进行三维裸眼实时观察的技术。该技术将光场显微镜得到的子图像阵列直接投影在微透镜阵列的焦平面上,在空间一定区域内双眼可分别观看到两幅不同视角图像,使观察者产生立体视觉。该系统具有结构简单,无需相干光源,无需佩戴特殊眼镜,可多人同时观看等优点,应用前景广泛。  相似文献   
110.
X‐ray optics called multilayer Laue lenses (MLLs) provide a promising path to focusing hard X‐rays with high focusing efficiency at a resolution between 5 nm and 20 nm. MLLs consist of thousands of depth‐graded thin layers. The thickness of each layer obeys the linear zone plate law. X‐ray beamline tests have been performed on magnetron sputter‐deposited WSi2/Si MLLs at the Advanced Photon Source/Center for Nanoscale Materials 26‐ID nanoprobe beamline. However, it is still very challenging to accurately grow each layer at the designed thickness during deposition; errors introduced during thickness measurements of thousands of layers lead to inaccurate MLL structures. Here, a new metrology approach that can accurately measure thickness by introducing regular marks on the cross section of thousands of layers using a focused ion beam is reported. This new measurement method is compared with a previous method. More accurate results are obtained using the new measurement approach.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号